
Netherlands TNO Physics and Electronicsorganization for m u fLaboratory
-. applied scientific

research P.O. Box 96864
2509 JO The Hague
Oude Waalsdorperweg 63

I rMO-re port The Hague, The N~eterands

Fax +31 70 328 0961
Phone +31 70 326 4221

titde

report no. COPY no. flepeDBSPotrs0;
FEL-9 1-BI83 Building a GIS en top of

Nothing from this issue ma5y be reprod ced
Mnd/or published by print.phtpnt 

.microtitni or any other means without
Previous wrtten consent trom tNO.
Submitting the rport for inspection to
parties directly interested is permitted. ato~)
In case this report was drafted under PJ.M. van Oosterom
instruction, the rights and obligation 6C iiseof contracting parties are subject to either C iire
the'Standard Conditions for Research
Instructions given to tNO' or the relevarnt Dagreement concluded between the contracting
parties On account of the research object dateD I
involved. August 1991 S E ECTE

TNO 03FEB 041992D"

classification

title Unclassified

abstract Unclassified

report Unclassified

no. of copies 30
no. of pages 25 (excl. RDP & dufistutior hast)

This docuzt has been aPProved apenics
for Public release azid 1Wl. its

distribution is unlimito&

AD inforation which is classified according to Datca taisa.
ti11111111 abe~ Ueacd by the recipient is Mse amn wYM as elsasi-
tied blifhntiaion olfcorreapondtag va in his own eoarntry. No

92-02807

92 2 03~ 169



TNO report

Page
2

rapport no. FEL-91-B183
title Building a GIS on top of

the open DBMS "Postgres"
author(s) PJ.M. van Oosterom

C. Vijlbrief
institutes . TNO Physics and Electronics Laboratory

TNO Institute for Perception

date . August 1991
NDRO no.
no. in pow '91 709.3 (FEL)

Research supervised by : -
Research carried out by : P.J.M. van Qosterom

C. Vijibrief

Abstract (Unclassified)

Many commercial Geographic Information Systems have a dual architecture: thematic infor-
mation is stored in a relational database management system and the spatial infrmation is sto
in a separate subsystem capable of dealing with spatial data and spatial queries. ides not g
elegant conceptually, this dual architecture also reduces the performance, bec se objects ye to
be retrieved and compiled from components that may be stored far apart in e two su stems.
We present a solution based on the extendable database management system Postgres, in which
thematic and spatial data are stored together.

The contents of this report was presented at the Second European Conferenmce on Geographical
Information Systems, EGIS '91, Brussels, Belgium, April 2-5, 1991. This contribution was
classified by the EGIS'91 Program Committee to belong to the five best papers out of 150 papers
selected from 325 proposals.

Ac. Jor. I-ror -

NTIS C1&

; Ost.~By .. ....... ..... ... ........ .............. ...... b to ,

i ~~~B.................. Dist ib.dio.,

Av aiL i.ty ,.

Dist A Sp i lI

Al J



UNCLASSIFIE

REPORT DOCUMENTATION PAGE (MOD-NL)

1. DOOM REPORT NUbMBER (MO4L) . RECIPIENTS ACCESSION NUMBER & PERFORMING ORGANIZTION REPORT
NUMBER

TD91-2613 FEL-91-B183

4. PROJECTTASC'VORK UNIT NO. . CONTRACT NUMBER S. REPORT DATE
22561 AUGUST 1991

7. NUMBER OF PAGES S. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES COVERED
26 (INCL. RDP. 33 FINAL REPORT

EXCL DISTRIBUTION UST)

10. TITLE AND SUBTITLE
BUILDING A GO ON TOP OF THE OPEN DBMS "POSTGRES*

11. AL ' O(S)
P.J.M. VAN OOSTEROM

T. VULBRIEF

12. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
INO PHYSICS AND ELECTRONICS LABORATORY, P.O. BOX 96864, 209 JG THE HAGUE
OUDE WAALSDORPERWEG 63, THE HAGUE, THE NETHERLANDS

13. SPONSORNGM ITOilNG AGENCY NAME(S)
TNO DIVISION OF NATIONAL DEFENSE RESEARCH, THE NETHERLANDS

14. SUPP.EMENTARY NOTES

15 ABSTRACT (MAXIMUM 200 WORS, 1044 POSITIONS)
MANY COMMERCIAL GEOPGRAPHIC INFORMATION SYSTEMS HAVE A DUAL ARCHI7II RE. THE THEMATIC
INFORMATION IS STORED IN A RELATIONAL DATABASE MANAGEMENT SYSTEM AND THE SPATIAL INFORMATION B
STORED IN A SEPARATE SUBSYSTEM CAPABLE OF DEALING WITH SPATIAL DATA AND SPATIAL QUERIES. BESIDES NOT
BEING ELEGANT CONCEPTUALLY, THIS DUAL ARCHITECTURE ALSO REDUCES THE PERFORMANCE. BECAUSE
OBJECTS HAVE TO BE RETRIEVED AND COMPIED FROM COMPONENTS THAT MAY BE STORED FAR APART IN THE
IWO SUBSYSTEMS. WE PRESENT A SOLUTION BASED ON THE EXTENDABLE DATABASE MANAGEMENT SYSTEM
"POSTGRES. IN WHICH THEMATIC AND SPATIAL DATA ARE STORED TOGETHER.

THE CONTENTS OF THIS REPORT WAS PRESENTED AT THE SECOND EUROPEAN CONFERENCE ON GEOGRAPHICAL
INFORMATION SYSTEMS, EGS '91. BRUSSELS. BELGIUM, APRIL 2-5,1991. T CONTRIBUTION WAS CLASSIFED BY THE
EGI91 PROGRAM COMMITTEE TO BELONG TO THE FIVE BEST PAPERS OUT OF 10 PAPERS SELECTED FROM 325
PROPOSAS

16. DESCRIPTORS WflR
GEOGRAPHY GEOGRAPHICAL INFORMATION
INFORMATION SYTEMS SYSTEMS
DATABASES POSTGRS

171L SUBCIM CLMSSOATION 17b6 9UOWAYCLASIICATION 170. IUfOUTYOLAPIOATION

(OF RPORT) (OFPA20 (OP A11TRT)
UNCLASSIFIED UNCASIFED UCWID

I&. DISIUTONWAVALAhLI Y STATUME ' lt 11SOUWTYCIN 81PIATION

UNUITdA AVALABLE NCLIAUE

4

I ___m__________R______-_-- m~ ;mm --- m~m



- - T

TNO report

Page
3

rapport no. FEL-91-BI83
tite Het bouwen van cen GIS op basis

van bet open DBMS "Postgres"
auteur(s) PJ.M. van Oosterm

C Vijibrief
instituten Fysisch en Elektronisch Laboratorium TNO

Insittnut voor ituigfysiologie TNO

datum Augustus 1991
hdo-opdr. no.

Onderzock uitgevoeid olv.
Onderzoek uitgevoertl door PJ.M. van Oosterom

C. Vilbrief

Samenvatting (Ongerubriceerd)
Vele commerciele Geografishe hnfonnatiesystemen hebben en duale architectwr: de themnatisdie
informatie is opgeslagen in een relationeel database management systeem en de ruimtekike infor-
matie is OPgeslagen in cen apart subsysteem dat geschikt is voor bet behandelen van ruimtelijke
gegevens en nzimtelijke vragen. Naast bet feit dat dit conceptueel geen elegante oplossing is. is
er verder bet nadeel dat deze duale architemtur de presaties van bet systeem vennindert. omdat
voor con object de deelcomponenten uit beide subsystemen opgebad macten worden en daara
macten warden geintegreerd tot cen coMpleet object. Mi presenteren ccii oplossing gebaseerd
op bet uitbreidbare database management system "Postgres," waain tbemnatiscbe en nzimtelijke
gegevens bij elkaar worden opgeslagen.

De inhoud van dit rapport is gepresenteerd op de Second European Conference on Geographical
Infonmation Systems, EGIS '91, Brussels, Belgium, April 2-5,1991. Dewe bijdrage went doorde
EGJS'91 programma commissie booneeld als 6M van de, vijf beste uWt de 150 bijdragen welke
op bun beurt uit 325 voortellen waren geselecteerd.

St:1 ~ ~---



page

4

Contents

Abstract 2

Samenvatting 3

Contents 4

1 Introduction 5

2 DDMS Capabilities required by GIS applications 6

2.1 Geographic Data Types. .. .. .. .. ... .. ... ... ... .. ... ... .. 7

2.2 Spatial Operators. .. .. .. .. .. .. ... ... .. ... ... .. ... ... .. 7

2.3 Spatial Indexing Techniques .. .. .. .. .. .. ... ... .. ... ... ... .. 8

3 Description of Postgres9

3.1 The Architecue of Postges . .. .. .. .. .. .. ... ... .. ... ... ..... 9

3.2 The Query Language Postquel .. .. .. .. .. .. ... ... .. ... ... ..... 9

3.3 Defining a User Type .. .. .. .. ... .. ... ... .. ... ... ... .. .. 10

3.4 The R-tree. .. .. .. .. .. ... ... .. ... ... .. ... ... ... .. .. 12

4 Implementation of a GIS on top of Postgre is

4.1 Er+.. .. .. .. .. .. .. .. .. ... ... .. ... ... .. ... ... ..... 15

4.2 The GEO system .. .. .. .. .. .. ... .. ... ... ... .. ... ... ... 16

4.3 The Postges Layer. .. .. .. .. ... ... .. ... ... ... .. ... ..... 17

4.4 Dynamic Display .. .. .. .. ... .. ... ... .. ... ... ... .. .... 19

5 Conclusion 2

Acknswledguteuts 21

ibliographmy 22

TI



-

TNO report

Page
5

1 Introduction

Many of today's information systems are built around a relational database (RDBMS). The
geographic nature of the data in Geographic Information Systems (GISs) results in a number of
problems for an RDBMS. It is impossible to state queries like: "Which cities with a population

greater than 100.000 lie within 10 kilometers from the river Rhine" in the data manipulation
language of an RDBMS. Even if it were possible to state this type of queries, then they could not
be answered efficiently, because an RDBMS lacks the proper multi-dimensional index structures.
Therefore, the storage system often consists of two major subsystems. We will call this the dual
architecture. The first subsystem is based on an RDBMS and contains the alphanumeric thematic
data. The second subsystem is a special purpose storage system, capable of dealing with spatial
data. An object, that has both a thematic and a spatial component, has parts in both subsystems
which anm linked by common idenujler. In order to retrieve one object, two subsystems have to be
queried and the answer has to be composed Many commercial GISs have chosen this inefficient
and inelegant dual architecture.

We investigate a data model that does not have this dual architecture. We have chosen the
relational data model as our starting point, because it is a powerful and well-known model. The
required extension to the relational data model is based the incorporation of 1301: geographic data
types (e.g., line, polygon), spatial operators (e.g., distance, overlap, nearest-neighbor), and spatial
index structures (e.g., R-tree [12), KD2B-tree [291). However, most DBMSs are closed, i.e., it is
impossible to add new data types, operators, or index structures. An exception is Postgres [23],
an experimental DBMS developed at the University of California, Berkeley. We are developing a
prototype GIS based on Postgres.

Chapter 2 states the functionality that a GIS demands from a DBMS. Besides the functional
aspects, this paper also pays attention to performance aspects of a solution. Our prototype GIs,
called the GEO system, is implemented on a 3un 3/60 workstation. Before describing this system
in Oapter 4, a short introduction to the most important aspects of Postgres is given in Chapter 3.
This paper is concluded in Chapter 5 with some final remarks and suggestions for future research
and development.



S TNO report

page
6

2 DBMS Capabilities required by GIS applications

GISs requie more capabilities from a DBMS than the traditional business data processing systems.
This is also true for other spatial information systems, such as CAD systems. The mathematically
sound relational data model [4] is the starting point for the following discussion. This chapter
enumerates the most important requirements of a DBMS that is used by a GIS. The DBMS must:

rl Store all the data in one storage system, that is, both the spatial data and the non-spatial (or
thematic) data. This avoids the drawbacks of a dual architecture.

r2 Support that tuples of the same relation may have different sizes. This is a very common
situation in GISs as the number of points per polyline or polygon is not fixed.

r3 Represent Complex objects. Various geographic objects consist of multiple components.
For example, the representation of a city may consist of a collection of roads, buildings, and
various other terrain elements. These must be quickly accessible.

r4 Enable the exchange of complete geographic data sets (including the possible relationships
between the different individual entities) between various GIS sites.

r5 Support (or be extendable to support) both raster and vector data. The vector data can be
subdivided in the following three geometric data types: point, polyline and polygon. There
must be two and three dimensional variants of these types; see Section 2.1.

rd Support the following three categories of spatialoperators: geometriccalculation operators,
topological operators, and spatial comparison operators; see Section 2.2.

r7 Provide spadai index strucures. As GISs usually deal with large collections of geographic
data, a spatial index structure is indispensable; see Section 2.3.

r8 Provide big tuple attributes, because polylines, for example, may contain thousands of
segments.

r9 Allow the implementation of an advanced graphic user-Interface thuough a direct interface
with a high level progammins language, such as C

These requirements we not independnt of each otha For example. the fact tho all data types
have to be stored in one storage system (rl), causes most of the other requirems. Requirements
rS, r69 and r7 ae explained i more detail in the next dre sections.

""

I _ _ _ _ _ _ _ _ _ _ _.__.....

_ _ lea m l t Illlm mll / II I HI~T



TNO report

7

[a] create tower (name = charl6, owner = charl6, location = point2)
[b] create road (name = charl6, shape = polyline2)
[c] create town (name = charl6, #inhabitants = int4, shape = polygon2)

Rguur 2.1: Relations with geographic attributes

2.1 Geographic Data Types

Nearly all geographic data processing [ 16 25,261 is performed with vector, raster, or a combination
of these geometric data formats. The vector format has three subtypes: point, polyline and
polygon. The emphlc-4s is on the vector representation, because it allows more flexible object-
oriented manipulations, though the raster representation also has advantages; see [27]. Although
their representations might be complex, these data types must be regarded as atomic values in the
data model.

Figure 2.1 demonstrates the use of geographic attributes in relations using the Postquel query
language; see Section 3.2. The "2" behind point, polyline, and polygon indicates that these ar
two dimensional attributes. Similarly, it is possible to have three dimensional variants of these
data types; a "' behind the type.

2.2 Spatial Operators

This chapter describes the basic spatial operators. More complex operators exist, but do not
have to be included in the basic GIS database system. For example, not included ams: network
calculations, advanced visualization techniques, simulation, and complex geometric calculations,
such as calculating the 'Itronoi diagram. the convex hull, orthe smallest enclosing circle. Although
polygon-overlay is a complex operation, it is used in many GIS applications, and it must be added
to the set of standard operators. The polygon-overday takes two sets of polygons and calculates
all intersections, which results in a third set of polygons.

Many spatial operators or functions have been described by various authors [2,11,13,14,19). We
do not claim that our lists of operators we complete, but they should give a good impression ofthe
basic spatial operato . W distinguish three fundament classes of spatial operastor in addition
to the more standard operator classes (e.g., comparison, logical, statistical, and set opeators) in
an RDBMS:

I. Geomwic calculion operas return a scalar value or a geometric value. Some of the
moan importan operators am: distance, length, perimeter, area, closest,
intersection ad union,

2. Topologcal operatr mum a geometric value. Some examples: neighbors, next link (in

4



TNO eport

Page

a polyline network), left and fight polygons of a polyline, start and end nodes of polylines.
We do not need an extra set of topological operators, because the topological model can be
captured in a natural manner in the standard relational model; see [301.

3. Spatial comparison operators return a Boolean: true or false. Although the calcula-
tions are similar to the previous classes of operators, they form a separate group. Some
examples are: intersects, inside, larger-than. outside, north-of, on, and
neighbor-of. All comparison operators have two operands, which may be, in most
cases, of any geometric type. Note that it is often possible to emulate these operators by
combining the standard comparison operators with the geometric or topological operators.

As stated above, there can be other spatial operators that are useful for a specific application. But it
is impossible to include them all in this paper. An "open" database is the solution for the dilemma
which operators do belong and which operators do not belong to the system. If an operator is
not available in the set of basic spatial operators, it can be implemented by the user and, after it
has been certified, added to the database system. In this way other users also benefit from the
new capabilities. Note that organizational actions have to be taken. For example, someone must
ensure the clear and unique naming of operators. It is possible to formulate queries using the basic
spatial operators as will be demonstrated in Chapter 3.

2.3 Spatial Indexing Techniques

The B-tree [ 1], an indexing technique used in many DBMSs, combines several desirable properties.
It is a dynamic, height balanced structure, i.e., insertions, deletions, and updates of entries may be
alternated with searches. Because of the balanced nature, searches are efficient (O(Iog n) time).
Also, the nodes in the B-tree are at least half filled. This results in a compact structure.

However, the B-tree is only suited for searching based on one dimensional attributes, such as
numbers or strings. Multiple indices on more than one attribute of a relation are possible, but
(with current implementations of RDBMSs) only one can be used for solving a query like:

retrieve (tower.all)
where 5 < tower.location.x < 10
and 12 < tower.location.y < 20.

These point queries cam be solved effiiently by the KDB-tree [181 index structure. The KDB-tree
is a KD-tee adapted for sonday storage ard can handle point data in any dimension. The
KD-tme camot handle the polyline and polygon data types. In the literature ther m several
solutions for this problem, such as: the R-tree [5) (see Section 3.4), the Field-tree [6, 71, the Cell
tree [10), the KD2B-tue, the Sphere-te [29], and the Reactive-tru [281. When ine-tuning the
application the proper indexing tetique has to be selected. I



'rNO mpart

page
9

3 Description of Postgres

This chapter gives an introduction to the open DBMS Postgres. A more detailed functional
description can be found in [22] and several implementation decisions are discussed in [23]. The
Postgres reference manual 133] contains all the infonnation required to use the system. Postgres,
the successor of Ingres, is a research project directed by Michael Stonebraker at the University
of California, Berkeley. The characteristic new concepts in Postgres are: support for complex
objects, inheritance, user extendability (with new data types, operators and access methods),
versions of relations, and support for rules. The later may be used to implementation constraints.

In the next sections we explain the features that are of interest to GISs. We will illustrate these
features with some GIS examples based on the current version of Pstgres (version 2.0.3). FiRMt,
Section 3.1 describes the global architecture of Postgres. The next section describes the query
language Postquel and Section 3.3 gives an example with a user defined type. In Section 3.4 the
spatial access method that is available within Postgres, the R-tree, is described.

3.1 The Architecture of Postgres

Postgres can be viewed as a collection of files and processes that operate on these files. The files
contain the relations and data required for the access methods, that is, the B-tree or the R-tree itself.
A daemon process postmaster handles the communication between the backend (the process that
does the real DBMS work and is therefore called Postgres) and thefrontend or application. The
postmaster starts a backend process for each application that requests the services of Postgres. A
standard Postgres application is the monitor, an alphanumeric user-interface for Postgre. The user
may state Postquel queries and the answers are displayed in a tabular format. New applications
can be developed based on Postgres by using the C library functions of libpq. This library contains
functions to pass the queries to the backend and to interpret the buffers, called portals, which are
used to return the results. Another way of interacting with Posges is by using the fast path.
The fast path makes it possible to call Postgres system functions directly. In this way the query
language is bypassed and best performance is achieved by calling the access methods.

3.2 The Query Language Postquel

The query language Postqul is based on three concepts:

* There are three kinds of dam ypea, base types (bilt-in system, aid user), arry types
(fixed and vaiable length) and composite types (tuple, set of tuples, and relation).

---I

i1 _ _



CaTNO report

page
10

(a] retrieve min (distance (tower. location, ° (10,15)°: :point2) )

[b) retrieve closest(tower.location, 1(10, 15) ::point2))
[c] retrieve (tower.name)

where inside((retrieve (town.poiygon)
where town.name = 'Amsterdam"), tower.location)

Figuur 3. 1: Postquel queries using geographic functions

* The following kinds offuncions arm available: normal functions (C or Postquel), operators
(binding of a symbol to a function), aggregate functions (count, sum, average, min, max,
etc.), and inheritable functions.

* Rules have the form: "on condition then do action" and they are used to trigger DBMS
actions. Section 4.4 gives an example.

User defined types, with their own functions and operators, are of particular interest, because
these may be used to define the geographic data types. Section 3.3 describes the user types in
more detail. The database administrator may "upgrade" user types to system types, making them
available to each data base created on the system.

The current distribution of Postgrs already contains a system type example that approximates
a two dimensional variant of the extension with geographic data types we proposed. It consists
of the four types: point, lseg, path, and box. The type lseg implements a single line
segment. Polylines and polygons may be represented by path, which is a variable length army
of lseg. The special case of a two dimensional axes-parallel rectangle is represented by the
type box. Some useful functions and operators are provided (test for overlapping boxes, test if a
point lies inside a box, the distance between two points), but more are required for a really good
geographic extension of the DBMS; see Section 2.2.

Some practical GIS example queries show how geographic functions might be used in Postquel;
see Figure 3.1. Query [a] is a "minimum distance" query. This will not work in Postgres
version 2, because the aggregate function min is not yet implemented. The next query Ib] does
the same thing, but is formulated more efficiently by using the function closest. The last
example, query [c], uses the inside function in order to retrieve all the names of the towers in
Amsterdam.

3.3 Defining a User Type

Th example in this section defines she new use type dm,. Tis example is beed on the totrial
distributed with Postgas. It is impomm to realize that, in Postgres, ther is a difference betwen
the intermnal and the externaI rmpees n of a type. The external represcration is a chu cter
string foruserinput and output mned inthemonito nthecaaeofacirdethiscouldbe. (-mer..x,

I

I _ _ _ _ _ _ _ _ _



TNO repo

#include <stdjo.h>
typedef struct ( double x, y; IPOINT;

typedef struct ( POINT center; double radius; )CIRCLE;
/* The internal representation ~

CIRCLE *circle-in(str)
/* Convert from external to internal representation *
char *str;

/* Allocate new CIRCLE. parse string, return result. ~

char *circle_ out (circle)
/* Convert from internal to external representation. *
CIRCLE *circle;

char *iesult;
if (circle == NULL) return(NULL);

result = (char *) palloc(60);
(void) sprintf (result, * (%g, %g. %g)*

circle->center.x, circle->center.y, circle->radius);
return (result);

char circlearea-greater(circlel, circle2)
CIRCLE *circlel, *circle2;
(return(circlel->radius > circle2->radius);

Fig=u 32: A part of the C soutc ode defining the new type circle

LlI



TNO report

Page

12

[a) define C function circle.in (file = circle.o",4
returntype = circle) arg is (charl6)

[b] define C function eircle..out (file = "circle.o*,
returntype = chArl6) arg is (circle)

fcl define type circle (internallength = 24, input = circle-.in,
output = circe.out)

[d) define C function circle_area..greater (file = "circle.ol,
returntype = bool) arg is (circle, circle)

[e] define operator > (argl = circle, arg2 = circle,
procedure = circle..area..greater)

(f) create tutorial ta = circle)
[g] append tutorial (a = '(5,l,9)l::circle)
(h] append tutorial (a = (2,2,5)"::circle)
[ii append tutorial (a = "(O,1,7)*::circle)
[j) retrieve (tutorial.all) where tutorial.a > "(O,O,8)"::circle

Figuur 3.3: The Pbstquel part of defining the new type circle

center-y, radius), for example, (0, 0, 1): the unit circle. The internal representation determines
how the type is organized in memory, just as in the programming language C Figure 3.2 shows
the C code that defines the internal representation of the new type circle and some C functions for
it. Assume that this is stored in the file circle. c.

The functions c irc le.in and c ircle-.out perform the conversions between external and inter-
nal tepresentations. There is also one operator function for this type: circle.area..greater,
which determines whether the area of the first circle is greater than the area of the second one.
After compiling, which produces the object file circle. .o, Postgres must be informed about
the existence of the new type and its functions. first the conversion functions are defined (me
Figure 3.3 queries [ab]), then the new type [c] is defined, and finally the operator function [i and
it's symbolic representation [e] are defined; an ">" sign. Now it is possible to create relations
with circles in them [f]. append records to them [ghJiJ, and retrieve t circles which have an area
greater than the circle (0,0,8) (j]. Thse result of the last query [ii is of course the circle (5.1.9).

3.4 The R-tree

The R-tree was defined by Guttman 1121 in 1984. The leaf nodes of the R-tree contain ewtdes
of the form: (I,oitlec-Ident~fer), where object-idientfijer is a pointer to a data object imii I is a
bounding box (or Mfinimal Bounding Rectangie, MBR). The internal nodes contain wnades of the
form: (Lchild-pointer), where child-pointer is a pointer to a child node and IlIs the AfBR of that
child. The maximum number of eties in each node is called the branching fauctor M ant is
chosen to suit paging and disk 1/0 buffering. The Insert and delete algorithms of Guttman asr
that the tree is balanced (all leaf nodes are on the same level) and that the number of entries in
each node lies between mn and M, where in < M/2 is the minimum number of entdes pernode.



TNO report

Page

13

Figure 3.4 shows an R-tree with two levels and M--4. The lowest level contains three ledf nodes
and the highest level contains one node with pointers and MBRsr of t leaf nodes.

= i---- :r:. B A B C

.. DEFG.... HIIJ IK I L N

C ~Branching factor M = 4

Fguur 3.4: The R-tree

The infornation in the remainder of this chapter is based on the beta version of the R-tree in
Postgres and is provided by Mike Olson[17]. The R-tree will be included in the next public
release of Postgres (version 2.1). The performance tests with the R-tree of Ftstgres are done on
DECstation 5000/200 under Ultrix 4.0. The use of the R-tree is similar to the use of the B-tree
in Postgres. That is, one can use the Postquel construct def ine index to define an index on
the region attribute of the relation testrel; see Figure 3.5 [ad]. The R-tree can be used with
system type box and the following operators:

[operator meaning
a << b box ais strictly left of box b
a &< b a is leftof b,or overlaps b.but does not extend to the tght of b
a &&b a overlaps b
a &>b a is rght of b.or overlaps b, but does not extend to the left of b
a >> b a is strictly right of b
a @b a is contained by b
a '-b a contai4na b
a -=b a and bare the same box

The relation testrel is populated (Figure 3.5 Ib]) with 30.000 rectangles, sides ruidom between
0 and 1000, and origins random distributed in thtee regons 10,000 in (0,0.,10000, 10000). 10=00
in (30000, 10000, 50000, 30000). and 10,00 in (0, 0. 50000. 50000). This data oft hs dhosen,
because it is representative for map data- objects of different sizes and a population density ta
is not constant over the whole region. Figure 3.5 [c) shows a rectangle overlap query. Thas is an
important type of query, becaus it is used to generate maps on the rectanular screw. A POWn
query, used for implementing a "pick" operaion, can be fonnutated by taking a box with equal
diagonal comner points.

A restnictive spatial query. that metrieves up to 100 objects, without the R-tree tdakebout 5

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _* 4t



TNO eont

Page
14

[a] create testrel (region box)
[b] append testrel /* append lots of tuples */
[c) retrieve (testrel.all) where testrel.region && (98,20,9,10),::box
[d] define index testind on testrel using rtree (region boxops)

Figuur 3.5: Defining an R-tree index for the relation testrel

seconds using a sequential scan. Building an R-tree index on the test relation with 30,000 objects
takes about 35 minutes. However, now the same spatial queries un typically afew hundred times
faster using the index scan. As the size of the relation grows, the gain of the index-scan will
become larger and larger compared to the sequential scan.

The size of the file that contains the testrel is 3.0 Mb. The size of the file that contains the
index test ind is 6.7 Mb. This may seem a lot in comparison the relation testrel, but in the
case of GIS-application with tuples that have polygon attributes varying from 10 to 1,000 points,
the overhead of the R-tree is quite acceptable.

7

i Y



TNO rport

Pagt 15

4 Implementation of a GIS on top of Postgres

We have built the GEO system, a general purpose GIS frontend for Postgres. The system has a
"direct manipulation user-interface," allows us to implement real world GIS systems, and allows
us to experiment with the user-interface and various data structures and storage techniques. Some
of the expected applications art: electronic sea-maps and various Command and Control (C2)
systems. The current prototype system is written in C*+ [24] and uses the El ++ [31, 321 class
library.

4.1 ET++

ET++ is a C++ class library, written by Andre Weinand, Erich Gamma and Rudolf Marty of the

University of Ztirich. The library consists of a Smalltalk-like collection of classes, just as Keith
Gorlen's NIHi (9] class library. The library further contains graphic user-interface building blocks
in a manner similar to Interviews. In contrast to NIH and Interviews, ET++ contains both in an
integrated design.

An executable ET++ program attaches automatically to the actually used Window System: XII
18, 201, NeWS, or SunView. The visual appearance of the program is the same in each of the
window systems. The running program also behaves the same. This is possible because ElT'
defers calling of the actual underlying window system till the lowest level of drawing lines and
pixels. The fonts used and the layout and interaction of the user-interface building blocks give
it a Macintosh appearance. This is no coincidence, since the authors based many of their ideas
on the MacApp framework [21]. In the context of user-interface design, ET++ has the advantage
over most other graphic user-interface toolkits (SunView, XView, Xt-widgets) that it enables the
designer to change every aspect of the visual appearance and "look and feel" by overruling the
appropriate methods in the C"- class inheritance framework. This allows us to implement our
own ideas of the ideal "look and feel" without rewriting most of the toolkit. Other features which
can be built with with minimal programming effort using ET+ , are:

* A Smalltalk-like class hierarchy and source browser.

" Dynamic loading.

" Generic object 1/O.

" Cut and Paste between qiplicatim.

* Multiple pane. a window can be split into two or four sections which show difflrur
portions of the image in the window. Each pane has individual scrollbs.

SThe ariml nme of NCI wn O0PS.



TNO report

pagp

16

Figuur ~ go 4.1: The usrin=faeo teGPyteshwngacmpsd ur

* Gnertio ofa Pst~np fie, ontinig de ntntsof widow T e utde o
auslt n abitap mag, bt ues he ullresluton f te Nt~ciptdevce

4.2 Te GEOsyste

The a.*ytm a h Iioig etrs
I. Aspeialpurosedataarrcuae Wer omutly ur wn -tae ipla utiM.Th

laeralow te iply f eorahi at tl esd n olgesbme -w - n

functinalityia notrequird. Thispecia purpoe dataase l ftdc eue o s

badcgtmd dta, mi U mnasodordt.rvrec hnteRtn ea
aviabewihn oare idpsv obeefilta ht h seia upoedaawu3r
layr il b rmoea

2.APetiv ayrwhc eale heed-srtofemle urisbyuin d13 up

iuulati 1:on user-Irter face,"i c of the GEu sytm hn oposedue querie.y u fgegqi aa

e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ *'A Geeaino otcitfle otiigtecnet f idw h uptde o

reul i abtm mae bt se heful esltin f h Pstcrp devie



TNO report

page
17

the results of these queries are displayed as labeled points or polylines on the map. It is
also possible to present the results in a tabular format. Further, this module allows the user
to modify Postgres data with a "direct manipulation user-interface." The Postgs layer is
discussed in more detail in Section 4.3.

3. An annotaton layer. This layerhas drawingcapabilifies a found inmany drawing programs
(text, polylines with arrowspolygonsetc.) and allows the exchange of infornation between
the users of different networked workstations. Users can view and edit different annotation
overlays and look at overlays created by others: a briefing.

4. The capability of making changes in Postgres data visible without specific user actions
makes it possible to create dynamic displays with moving and/or changing objects; see
Section 4.4.

5. The possibility to customize the GEO system by hiding features and options of the system
which are not needed for a specific application or adding special functions or icons by
editing metadata in the Postgres database.

In the current system only the features 1-3 have actually been implemented, while features 4 and
5 are under development.

4.3 The Postgres Layer

In the Postgres layer, one firt specifies the database table and the attributes, which should be
retrieved. Then, the selection criteria can be specified by building a tree which represents the
"where" clause of the query. The resulting tree is the graphic representation of the parse tree of a
"where" clause in the Postquel query language. The operations that the user can apply to the nodes
in this tree are the productions in the context free grammar describing a Postquel "where" clause
although the end-user is probably not (and should not be) aware of this underlying principle. This
guarantees that all possible "where" clauses can be specified. This graphic tree building has two
advantages:

1. Tbe graphic tree representation makes inhsently complex boolean queries easier to under-
stand (passe) for the end-user

2. It is not possible to formulate queries that result in a syntax ero The systachecm s die
parameter types of functions and operators and ida the user by the selection of the acte
parameter For example, if te user choes a function like distance, thin he can only
select table attributes that e of the conre type (point2).

Most erors made by the users, however, am semutlc and not sytactic. This cognitive apet
deserves future researd. The productiom (r.wrltig rules) a:

.7



page

9 Choosing a function or operator, which is used for implementing the restriction.

* Choosing a table attribute, which is an operand for a selected function or operator. This may
be an attribute of another table (implementing joins) or of a previously composed query.

* Cboosingaconstant from arangeoftypes(bool, int4, point2, polyline2, polygon2,
text, etc.) as operand. The available types ame retrieved from the Postgres system tables.

e Choosing a boolean operator and, or, and not. This enables the user to create mom
complex queries.

The query in Figure 4.1, which retrieves (and displays) all objects of relation o1 which have a
height less than 20 and whose distance from at least one of the objects in relation o2 is less than
100 kilometers, could be composed by the following sequence:

I . chooseoperator < (float4,float4)

2. choose attribute ol.height

3. Choose constant and enter 20

4. Choose boolean AND

5. choose operator < (float8,float:8)

6. choose operator <=> (point,point)

7. Choose attribute ol. loc

8. chooseattribute o2.loc

9. Choose constant and enter 100.

Note that constants are automatically cast to the corect type, that is, f loatol in line 3 and
f loat 8 in line 9. However, attributes can only be selected if they awe of the correct type, that is,
f loat4 in line 2madpoint2 in line 7and S.

Of course, the same query could be composed by appying tie production in mnother order. For
example, start with operator AND, dcose operator <c (f loatS. f loat8), eac. The
only restriction in the currnt version is that the operator hasto be selected before the opeands can
be chosen. So one has to know the type of dhe opeands. 'lbs next version will appy momatic
typecassing(e.g..shesyssmcloosesbetween< (int4int) and< (floatS, floatS))
and will allow the user to select an operand first and howes an operator latin

A



ThO report

page
19

[a] create o1 (1c point2. name charlE, height =float4)
[b] create changes (romaine - charl6, changedoid - oid)
(c) define rewrite rule olappend is

on append to ol
do append changes(relnane = loll, changedoid = current.oid)

[dl define rewrite rule oldeleto is
on delete to 01
do append changeatrelnase loll, changedoid = curront.oid)

[e] define rewrite rule cichazige is
on replace to ol.name
where current.height > 20
do append changes trelname = loll, changedoid = current.oid)

Figuur 4.2: The relation changes and three triggers on changes to relation oi

4.4 Dynamic Display

T'he dynamic display capability can be implemented by means of Postgres asynchronous portals
which notify applications when a rule has fired. The GEO system could define rules on the
relations of interest (relations that should continuously be updated on the display) and will be
notified by asynchronous portals when the tules fire.

An alternative is to have a Postges relation containing the changes made to the relations of
interest, and user defined Pstgres rules that append data to this relation; see Figure 4.2 1a0b. The
advantage of this approach is that the user has more control over the type of updates. which should
cause a update of the display. This is due to the fact that he (and not the GO system) defines the
rules with the appmropiate restrictions. he GO system just has to monitor the changes rielation
by means of a defirnn a single rule on this relation. Examples of thre user defined triggers tho
notify GEO system of changes to relation 01 are given in Figure 4.2 [cde. Rules 4.2 [c) ad
4.2 [d) cause new and deleted tuples to be (un)displayed. Rule 4.2 [e] cuses objects whose nme
is changed, to be redisplayed only when they ane taller than 20 meters.

Thie OEO system should remove tuples in changes which are older than6 for exumple, I mnmute.
The tuples cu be removed immediately eaft being poessed because mom thun one OEO
syste could be monitoring the changes relation.

~ 44N44-



TNO pon

Pae
20

5 Conclusion

Postgres offers several mechanisms for developing advanced GIM that have not been exploited in
OEO system yet. For example, Postgres offers historic data and versions of relations. Ter awe
types of GISs in which this plays an important role: (2 systems, GISs monitoring of environment,
or GISs visualizing cass data. It is obvious that these kind of applications will benefit from
the automatic sma of historical data. For example, thn is no extra coding required (m the
application) to solve the query:

retrieve (t.name, t.#inhabitants) from t in town["l January 1980"].

Applications that require geographic data at multiple scales we another example where the novel
mechanisms of Postgres, might offer solutions. We ae developing a system that avoids storing
redundant data, i.e., do not simply store a separate map for each scale. This system might benefit
from a combination of techniques:

* Our intended implementation of the Reactive-tree (28] within Postgres.

* The use of rules to derive small scale maps of large scale databases [151.

SFunctions within Postgres are useful for the implementation of procedural map generaliza-
tion techniques. For example, associated with a polyline or polygon is a line generalization
algorithm to reduce the number of points used, when working with small scale maps.

e Composite type attributes (relation, (set of) tuple) can be used for multi-scale representation
of a single object. These composite type attributes allow references to other tables, which
describe the refinement of objects at a larger scale map (3).

Another important research area deals with the cognitive (user-interface) aspects of a GIS. Tests
with real users am necessary to determine what a "good" graphic intesface to GISs should look
like. It is clear that the direct use of Postquel by end-users is not optimal.

MOIM



page
21

Acknowledgments

Many valuable comments and suggestions on an preliminary version of this pape were made
by the following persons: Hans Jame Carol McCann Hanm Schpper. PAWl Stmoper. Marcel
van Veelen. and Marco Woestenbwr. %WV would also like to thank the Pbstgres Research Group
(University of California at Berkeley) and the developers of ET** for making their systems
available. Special thanks to Mike Olsen (of the Nstgres Research Group) for his assistance and
testing the performance of the beta-version of the R-tse within Postgres.



Ta rmpoit

PAge
22

Bibliography

[1) R. Bayer and E McQright. Organization and maintenance of Imp ordered indexes. Acta
htormatica. 1:173-189, 1973.

(21 N.S. Chang and K.S. Fu. A relational database system for images. In Pictorial Information
Systems, volume 80 of Lecture Notes in Computer Science, pages 288-321. Springer-Veulag,
1980.

[3] Shi-Kuo Chang and Tosiyasu L. Kunii. Pictorial data-base systems. Computer (U.SA),
14(11):13-2 1, November 198 1.

(4] E.F. Codd. A relational model of data for large shared data banks. Commucations of the
ACM, 13(6):377-387, June 1970.

(5) Christos Faloutsos, rimos Sellis, and Nick Roussopoulos. Analysis of object oriented spatial
access methods. ACM SIGMOD, 16(3):426-439, December 1987.

[61 Andrt Frank. Storage methods for space related data: The Field-tree. Techniical Report
Bericht Nr. 7 1, Eidgendssischc Techniache Hochschule Zdich, June 1983.

[71 Andrew U. Frank and Renato Barrera. The Field-tree: A data strhcture for Geographic
Information System. In Symposium on the Design and Implementation of Large Spatial
Databases, Santa Barbara. California, pages 29-44. Lecture Notes in Computer Science
409, Springer Verlag, July 1989.

[8] Jim Gettys, Robert W. Scheifler, and Ron Newman. Xlib - C Language X Interface, X
Window System, X Version 11, Release 4. Technical report. Digital Euipment Crporation]
Massachusetts Institute of Technology, 1989.

[9) Keith E. Gorlen. An object-oriented class library for C" programs. Software - Practice and
Experience, 17(12):899-922, December 1987.

[10] Oliver Gfinther. $ffient Structures for Geometric Data Maneagement. Number 337 in
Lecture Notes in Compiter Science. Sp&Wge-Verlag, Berlin, 1988.

[I II R.H. Gating. Geo-telational algefri A model and query language for georaehic dutabase
systems. In Adv'ances in Database Technology - ED888, pages 506-527, March 1988.

[121 Antonin Guttmui trees: A dynamic index struture for apatia searehng ACM SIGMOD
13:47-57, 1914.

[131 Thomas Joseph and Alfonso F. Cardenas. MICQUERY: A high level quuiy language for
pictorial database munageem IEEE 7)awcdos on Software Engineering, 14(5)630-
639.,May 1988.

4

II, J



TNO report

pape
23

1141 SudhakarMenonand Terence Rt. Smith. A declarative spatial query processor for Geographic
Information Systems. Photogrammdtric Engineering and Remote Sewing, 55(1 1):1593-
1600. November 1989.

[15] Jean-a3aude Muller. Rule based generalization: potentials and impediments. in 4th. inter-
national Symiposium on Spatial Data Handling. Zilrich, Switzerland, pages 317-334, July
1990.

1161 George Nagy and Sharad Wagle. Geographic dataprocessing. ComputerSurveys, 1 1(2):139-
18 1,June 1979.

[17] Mike Olson. Postgres Research Group, University of California at Berkeley. personal
Commnunication, February 1991.

(11 John T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic
indexes. ACM SIGMOD, 10: 10-18,1981.

(191 Nick Roussopoulos, Quristos Faloutsos, and limos Sellis. An efficient pictorial database
system for PSQL. IEEE Transactions on Software Engineering, 14(5):639-650, May 1988.

120] Robert W. Scheifler and Jim Gettys. The X window system. ACM Transactions on Graphics,
5(2):79-109. April 1986.

[211 K.J. Schmucker. Object Oriented Programming for the Macintosh. Hayden, Hasbrouck
Heights. New Jersey, 1986.

[221 Michael Stonebraker and Lawrence A. Rowe. The design of Postgres. ACM SIGMOD,
15(2):340--355, 1986.

[231 Michael Stonebraker, Lawrence A. Rowe. and Michael Hirohama. The implementation of
Postgres. IEEE Transactions on Knowledge and Data Engineering, 2(1):125-142. March
1990.

[24] B. Stroustnzp. The C++ Programming language. Addison-Wesley Reading, Mass., 1986.

[251 Peter van Qosterom. Spatial data structures in Geographic Information Systems. In NCGA's
Mapping and Geographic lonnration System, Orlando, Florida, Pages 104-118, Septem-
ber 1988.

126] Pter van Oosterom. Spatial data strutures in Geographic EIformation Systems. In Comt-
puting Science In The Netherland, pages 463-477,1988.

[271 Pete van Oosterom. Reactive Damn Structusfor Geographic Iaoormarlan Systm. PhD
thess, Depsetment of Compute Science. Lelden Universty. December 1990.

[28) Pete yan Oosteron. Thve Reactive-tree - A storage structure for a seamless, scaleles
geographic database. In Awo-Carte 10. BahMporv, March 1991.

r~
a-~- '



TNO report

page
24

129] Peter van Oostenrin and Eric Osaassen. Orientation insensitive indexing methods for geomet-
ric objects. In 4th International Symposium on Spatial Data Handling, Zarich, Switzerland,
pages 10 16-1029, July 1990.

[301 Peter van Oosterom, Marcel van Hekken, and Marco Woestenburg. A geographic extension
to the relational data model. In Geo '89 Symtposium, The Hague, pages 319-333, October
1989.

[31] Andit Weinand, Erich Gamma, arnd Rudolf Marty. ET++ - An object oriented application
framework in C++. In OOPSLA'88, pages 46-57, September 1988.

[32] Andit Weinand, Erich Gamma, and Rudolf Marty. Design and implementation of ET+-+.
a seamless object-oriented application framework. Structured Programmintg, 10(2):63-87,
1989.

[331 Sharon Wensel (editor). The Postgres reference manual. Technical Report Memorandum
No. UCB/ERL M88/20 (revised), Electronics Research Laboratory, College of Engineering,
April 1989.

t3

SA5



TNO report

Page
25

~ (hit
J. Bruin PJ.M. van Oosterom C. Vijlbrief
(head of division) (project leader / author) (author)

44.



END

FILMED

OTIC

2:.V


